Standard Specification for Black and Hot-Dipped Zinc-Coated (Galvanized) Welded and Seamless Steel Pipe for Fire Protection Use

This standard is issued under the fixed designation A795/A795M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers black and hot-dipped galvanized welded and seamless steel pipe in NPS 1/2 to NPS 10, inclusive [DN 15 to DN 250, inclusive] (Note 1), with wall thicknesses as given in Table 1 and Table 2. Pipe having other wall thicknesses may be furnished provided such pipe complies with all other requirements of this specification and the outside diameter is as given in Table 2. Pipe ordered under this specification is intended for use in fire protection systems. The pipe may be bent, but it is not intended for bending made at ambient temperature wherein the inside diameter of the bend is less than twelve times the outside diameter of the pipe being bent (Note 2).

Note 1—The dimensionless designators NPS (nominal pipe size) and DN (nominal diameter) have been substituted in this standard for such traditional terms as “nominal diameter,” “size,” and “nominal size.”

Note 2—Successful bending of pipe is a function of equipment and technique as well as pipe properties.

1.2 This pipe is suitable for joining by the following methods:

1.2.1 Light-Weight Fire Protection Pipe—Rolled groove, welding, and fittings for plain end pipe. See Table 1 for dimensions.

1.2.2 Standard-Weight Fire Protection Pipe—Cut or rolled groove, threading, welding, and fittings for plain end pipe. See Table 2 for dimensions.

1.2.3 For pipe having dimensions other than those of Table 1 and Table 2, the joining method must be compatible with the pipe dimensions. A complete listing of standard light weight dimensions appears in ASME B36.10 and B36.19.

1.3 The following safety hazards caveat pertains only to the test method portion, Sections 8, 9, and 10, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

2. Referenced Documents

2.1 ASTM Standards:

A90/A90M Test Method for Weight [Mass] of Coating on Iron and Steel Articles with Zinc or Zinc-Alloy Coatings
A700 Practices for Packaging, Marking, and Loading Methods for Steel Products for Shipment
A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
A865 Specification for Threaded Couplings, Steel, Black or Zinc-Coated (Galvanized) Welded or Seamless, for Use in Steel Pipe Joints
B6 Specification for Zinc
E213 Practice for Ultrasonic Testing of Metal Pipe and Tubing
E309 Practice for Eddy-Current Examination of Steel Tubular Products Using Magnetic Saturation
E570 Practice for Flux Leakage Examination of Ferromagnetic Steel Tubular Products

2.2 ASME Standards:

B1.20.1 Pipe Threads, General Purpose, Inch
B36.10 Welded and Seamless Wrought Steel Pipe
B36.19 Stainless Steel Pipe

2.3 Federal Standard:

Fed. Std. No. 123 Marking for Shipments (Civil Agencies)

Note 3 Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.

TABLE 1 Dimensions, Weights, and Test Pressure For Light-Weight Fire Protection Pipe—Schedule 10*

<table>
<thead>
<tr>
<th>NPS Designator</th>
<th>DN Designator</th>
<th>Outside Diameter in.</th>
<th>Nominal Wall Thickness lb/ft</th>
<th>Weight Plain End kg/m</th>
<th>Test Pressure psi</th>
<th>kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>1.660 [42.2]</td>
<td>0.109 [2.77]</td>
<td>1.81 [2.69]</td>
<td>500 [3400]</td>
<td>1000</td>
</tr>
<tr>
<td>1 1/2</td>
<td>40</td>
<td>1.900 [48.3]</td>
<td>0.109 [2.77]</td>
<td>2.09 [3.11]</td>
<td>500 [3400]</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>2.375 [60.3]</td>
<td>0.109 [2.77]</td>
<td>2.64 [3.93]</td>
<td>500 [3400]</td>
<td>1000</td>
</tr>
<tr>
<td>2 1/2</td>
<td>80</td>
<td>3.500 [88.9]</td>
<td>0.120 [3.05]</td>
<td>3.53 [5.26]</td>
<td>500 [3400]</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>4.000 [101.6]</td>
<td>0.120 [3.05]</td>
<td>4.34 [6.46]</td>
<td>500 [3400]</td>
<td>1200</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>5.563 [141.3]</td>
<td>0.134 [3.40]</td>
<td>5.78 [8.18]</td>
<td>500 [3400]</td>
<td>1200</td>
</tr>
</tbody>
</table>

*Schedule 10 corresponds to Schedule 10S as listed in ANSI B36.19 for NPS 3/4 through 6 [DN 20 through 150] only.

Furnace-welded pipe is not made in sizes larger than NPS 4 [DN 100].

Not Schedule 10.

TABLE 2 Dimensions, Weights, Test Pressures For Standard-Weight Fire Protection Pipe—Schedule 30 and Schedule 40

<table>
<thead>
<tr>
<th>NPS Designator</th>
<th>DN Designator</th>
<th>Specified Outside Diameter in.</th>
<th>Nominal Wall Thicknessa lb/ft</th>
<th>Weight Plain End kg/m</th>
<th>Weight Threaded and Coupledad</th>
<th>Test Pressure psi</th>
<th>kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4</td>
<td>32</td>
<td>1.660 [42.2]</td>
<td>0.109 [2.77]</td>
<td>1.81 [2.69]</td>
<td>700 [4800]</td>
<td>1000</td>
<td>6900</td>
</tr>
<tr>
<td>1 1/2</td>
<td>40</td>
<td>1.900 [48.3]</td>
<td>0.109 [2.77]</td>
<td>2.09 [3.11]</td>
<td>700 [4800]</td>
<td>1000</td>
<td>6900</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>2.375 [60.3]</td>
<td>0.109 [2.77]</td>
<td>2.64 [3.93]</td>
<td>700 [4800]</td>
<td>1000</td>
<td>6900</td>
</tr>
<tr>
<td>2 1/2</td>
<td>80</td>
<td>3.500 [88.9]</td>
<td>0.120 [3.05]</td>
<td>3.53 [5.26]</td>
<td>700 [4800]</td>
<td>1000</td>
<td>6900</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>4.000 [101.6]</td>
<td>0.120 [3.05]</td>
<td>4.34 [6.46]</td>
<td>700 [4800]</td>
<td>1200</td>
<td>8300</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>5.563 [141.3]</td>
<td>0.134 [3.40]</td>
<td>5.78 [8.18]</td>
<td>700 [4800]</td>
<td>1200</td>
<td>8300</td>
</tr>
</tbody>
</table>

a NPS 3/4 through 6 [DN 15 through 150]—Schedule 40; NPS 8 and 10 [DN 200 and 250]—Schedule 30.

b Based on 20-ft [6.1-m] lengths.

c Furnace-welded pipe is not made in sizes larger than NPS 4 [DN 100].

2.4 Military Standards:
MIL-STD-129 Marking for Shipment and Storage^4
MIL-STD-163 Steel Mill Products, Preparation for Shipment and Storage^4

3. Terminology

3.1 Definitions of Terms Specific to This Standard:
3.1.1 defect—an imperfection of sufficient size or magnitude to be cause for rejection.

3.1.2 imperfection—any discontinuity or irregularity found in the pipe.

4. Classification

4.1 Pipe may be furnished in the following types (Note 3):
4.1.1 Type F—Furnace-butt welded, continuous welded,
4.1.2 Type E—Electric-resistance-welded, or
4.1.3 Type S—Seamless.

Note 3—See Annex A1 for definitions of the types of pipe.

5. Ordering Information

5.1 Orders for material under this specification should include the following, as required, to describe the desired material adequately:
5.1.1 Quantity (feet, metres, or number of lengths),
5.1.2 Name of material (steel pipe),
5.1.3 Type (seamless, electric-resistance-welded, or furnace-welded),
5.1.4 Grade (seamless and electric-resistance-welded only),
5.1.5 Size (NPS or DN designator and weight class; standard weight or light weight; or outside diameter) and wall thickness (Table 1 and Table 2),
5.1.6 Finish (black, galvanized, or other type of coating as specified by the purchaser),
5.1.7 Length (specific or random),
6.1 The steel for both welded and seamless pipe shall be made by one or more of the following processes: open-hearth, electric-furnace, or basic-oxygen.

6.2 Welded pipe NPS 4 [DN 100] and under may be furnace-welded or electric-resistance welded. Welded pipe over NPS 4 [DN 100] shall be electric-resistance-welded.

6.3 The weld seam of electric-resistance-welded pipe in Grade B shall be heat treated after welding to a minimum of 1000 °F [540 °C] so that no untempered martensite remains, or otherwise processed in such a manner that no untempered martensite remains.

7. Chemical Composition

7.1 The steel shall conform to the requirements as to chemical composition specified in Table 3.

7.2 An analysis of two pipes from each lot of 500 lengths, or fraction thereof, may be made by the purchaser. The chemical composition thus determined shall conform to the requirements specified in Table 3.

7.3 Methods, practices, and definitions for chemical analysis shall be in accordance with Test Methods, Practices, and Terminology A751.

7.4 If the analysis of either pipe does not conform to the requirements specified in Table 3, analyses shall be made on additional pipes of double the original number from the same lot, each of which shall conform to the requirements specified in Table 3.

8. Hydrotest

8.1 Each length of pipe shall be subjected to a hydrostatic test by the manufacturer. The minimum test pressure shall be as prescribed in Table 1 and Table 2. This does not prohibit testing at a higher pressure at the manufacturer's option. The manufacturer may apply the hydrostatic test to pipe with plain ends, with threads only, or with threads and couplings. The hydrostatic test may be applied to single or multiple lengths.

8.2 The hydrostatic test shall be applied, without leakage through the pipe wall, to each length of pipe.

Note 5: The hydrostatic test pressures given herein are inspection test pressures. They are not intended as a basis for design and do not have any direct relationship to working pressures.

9. Nondestructive Electric Test

9.1 As an alternative to the hydrostatic test, and when accepted by the purchaser, test each pipe with a nondestructive electric test in accordance with Practice E213, Practice E309, or Practice E570. It is the intent of this test to reject pipe containing defects.

9.2 The following information is for the benefit of the user of this specification:

9.2.1 The ultrasonic examination referred to in this specification is intended to detect longitudinal discontinuities having a reflective area similar to or larger than the reference notch. The examination may not detect circumferentially oriented imperfections or short, deep defects.

9.2.2 The eddy-current examination referenced in this specification has the capability of detecting significant discontinuities, especially of the short, abrupt type.

9.2.3 The flux leakage examination referred to in this specification is capable of detecting the presence and location of significant longitudinally or transversely oriented discontinuities. The provisions of this specification only require longitudinal calibration for flux leakage. Different techniques need to be employed for the detection of differently oriented imperfections.

9.2.4 The hydrostatic test referred to in Section 8 is a test method provided for in many product specifications. This test has the capability of finding defects of a size permitting the test fluid to leak through the tube wall and may be either visually seen or detected by a loss of pressure. This test may not detect very tight, through-the-wall defects or defects that extend an appreciable distance into the wall without complete penetration.

9.2.5 A purchaser interested in ascertaining the nature (type, size, location, and orientation) of discontinuities that can be detected in the specific application of these examinations should discuss this with the manufacturer of the tubular product.

9.3 In order to accommodate the various types of nondestructive electric testing equipment and techniques in use, the calibration tube shall contain, at the option of the producer, any one or more of the following discontinuities to establish a minimum sensitivity level for rejection.

9.3.1 Drilled Hole—Drill a hole radially and completely through the pipe wall, care being taken to avoid distortion of the pipe while drilling. The diameter of the hole shall not be larger than 0.031 in. [0.8 mm] for pipe under 0.125 in. [3.2 mm] in wall thickness, not larger than 0.0625 in. [1.6 mm] for pipe between 0.125 in. [3.2 mm] and 0.200 in. [5.0 mm] in wall

TABLE 3 Chemical Requirements

<table>
<thead>
<tr>
<th>Composition, max, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>Type E (electric-resistance-welded pipe) & Type S (seamless pipe)</td>
</tr>
<tr>
<td>Open-hearth, electric-furnace or basic-oxygen:</td>
</tr>
<tr>
<td>Grade A</td>
</tr>
<tr>
<td>Grade B</td>
</tr>
<tr>
<td>Type F (furnace-welded pipe):</td>
</tr>
<tr>
<td>Open-hearth, electric-furnace, or basic oxygen</td>
</tr>
</tbody>
</table>
thickness, and not larger than 0.125 in. [3.2 mm] for pipe over 0.200 in. [5.0 mm] in wall thickness.

9.3.2 Transverse Tangential Notch—Using a round tool or file with a 1/4-in. [6-mm] diameter, file or mill a notch tangential to the surface and transverse to the longitudinal axis of the pipe. The notch shall have a depth not exceeding 12 1/2 % of the specified wall thickness of the pipe.

9.3.3 Longitudinal Notch—Machine a notch 0.031 in. [0.8 mm] or less in width in a radial plane parallel to the pipe axis on the outside surface of the pipe, to have a depth not exceeding 12 1/2 % of the specified wall thickness of the pipe. The length of the notch shall be compatible with the testing method.

9.3.4 Compatibility—The discontinuity in the calibration pipe shall be compatible with the testing equipment and method being used.

9.3.5 For flux leakage testing, the longitudinal calibration reference notches shall be straight-sided notches machined in a radial plane parallel to the pipe axis. For specified wall thicknesses less than 0.500 in. [12.7 mm], outside and inside notches shall be used. For specified wall thicknesses equal to or greater than 0.500 in. [12.7 mm], only an outside notch shall be used. The notch depth shall not exceed 12.5 % of the specified wall thickness. The notch length shall not exceed 1 in. [25 mm], and the notch width shall not exceed the notch depth. Outside diameter and inside diameter notches shall be located sufficiently apart to allow separation and identification of the signals.

9.4 Reject pipe producing a signal equal to or greater than the calibration discontinuity.

10. Flattening Test

10.1 Perform the flattening test on pipe in accordance with the following:

10.1.1 Electric-Resistance-Welded Pipe— Flatten a specimen at least 4 in. [100 mm] in length cold between paralleled plates in three steps with the weld located either 0 or 90° from the line of direction of force as required in 10.1.1.1. During the first step, a test for ductility of the weld, no cracks or breaks on the inside or outside surfaces shall occur until the distance between the plates is less than two thirds of the original outside diameter of the pipe. As a second step, continue the flattening. During the second step, a test for ductility exclusive of the weld, no cracks or breaks on the inside, outside, or end surfaces shall occur until the distance between the plates is less than three fourths of the original outside diameter of the pipe. As a second step, continue the flattening. During the second step, a test for soundness, continue the flattening until the specimen breaks or the opposite walls of the specimen meet. Evidence of laminated or unsound material, or of incomplete weld that is revealed during the entire flattening test, shall be cause for rejection.

10.1.1.1 For pipe produced in single lengths, perform the flattening test specified in 10.1.1 on both crop ends from each length of pipe. Alternate the tests from each end with the weld at 0° and at 90° from the line of direction of force. For pipe produced in multiple lengths, perform the flattening test on crop ends representing the front and back of each coil with the weld at 90° from the line of direction of force, and on two intermediate rings representing each coil with the weld 0° from the line of direction of force.

10.1.1.2 For pipe that is to be subsequently reheated throughout its cross section and hot formed by a reducing process, the manufacturer shall have the option of obtaining the flattening test specimens required by 10.1.1.1 either prior to or after such hot reducing.

10.1.2 Furnace-Welded Pipe—For furnace-welded pipe, flatten a specimen not less than 4 in. [100 mm] in length cold between parallel plates in three steps. Locate the weld 90° from the line of the direction of force. During the first step, a test for quality of the weld, no cracks or breaks on the inside, outside, or end surfaces shall occur until the distance between the plates is less than 60 % of the original outside diameter of the pipe. During the third step, a test for soundness, continue the flattening until the specimen breaks or the opposite walls of the specimen meet. Evidence of laminated or unsound material, or of incomplete weld that is revealed during the entire flattening test, shall be cause for rejection.

10.2 Surface imperfections in the test specimen before flattening, but revealed during the first step of the flattening test, shall be judged in accordance with the workmanship requirements in Section 15.

10.3 Superficial ruptures as a result of surface imperfections shall not be cause for rejection.

11. Coating

11.1 Galvanized pipe shall be coated with zinc inside and outside by the hot-dip process. The zinc used for the coating shall be any grade of zinc conforming to Specification B6.

11.2 Weight of Coating:

11.2.1 The weight of the zinc coating shall not be less than 1.5 oz/ft² [0.46 kg/m²] as determined from the average of two specimens tested in accordance with 16.1 and not less than 1.3 oz/ft² [0.40 kg/m²] for either of the specimens. The weight of coating expressed in ounces per square foot or kilograms per square metre shall be calculated by dividing the total weight of zinc, inside plus outside, by total area, inside plus outside, of the surface coated.

11.2.2 Test specimens for the determination of weight of coating shall be cut approximately 4 in. [100 mm] in length.

11.2.3 Determine the weight of zinc coating by a stripping test in accordance with Test Method A90/A90M. The total zinc on each specimen shall be determined in a single stripping operation.

11.2.4 If flattening tests are made on galvanized samples, any flaking or cracking of the galvanized coating shall not be cause for rejection.

11.3 Protective Coating—If required by the purchaser, the pipe shall be cleaned of all foreign matter, dried, and given a
protective coating such as oil, lacquer, enamel, etc., as agreed upon by the purchaser.

12. Lengths

12.1 Unless otherwise specified, pipe shall be furnished in single random lengths of 16 to 22 ft [4.9 to 6.7 m].

13. Weights

13.1 The weights with the corresponding wall thicknesses for pipe of various outside diameters are prescribed in Table 1 and Table 2.

13.2 Nipples shall be cut from pipe of the same quality and the same or heavier weight described in 13.1.

14. Dimensions, Weight, and Permissible Variations

14.1 Weight—For the pipe covered by Table 1 and Table 2, the weight shall not vary more than ± 5% from that prescribed. The weight of pipe having other wall thicknesses shall not vary more than ± 5% from the nominal weight calculated from the relevant equations in Section 5 of ASME B36.10M.

NOTE 6—The weight tolerance of ± 5% is determined from the weights of customary lifts of pipe as produced for shipment by the mill divided by the total length in the lift. On pipe sizes over NPS 4 [DN 100], where individual lengths may be weighed, the weight tolerance is applicable to the individual length.

14.2 Diameter—For pipe NPS 1½ [DN 40] and under, the outside diameter at any point shall not vary more than ± 0.016 in. (0.41 mm) from the specified outside diameter. For pipe NPS 2 [DN 50] and over, the outside diameter shall not vary more than ± 1% from the specified outside diameter.

14.3 Thickness—The minimum wall thickness at any point shall not vary more than 12.5% under the nominal wall thickness.

15. Workmanship, Finish, and Appearance

15.1 The finished pipe shall be reasonably straight and free of defects. Any imperfection having a depth greater than 12½% of the specified wall thickness, measured from the surface of the pipe, shall be considered a defect. All burrs at the pipe ends shall be removed.

15.2 End Finish—Pipe shall conform to the following practice:

15.2.1 Each end of pipe shall be furnished plain end unless otherwise specified.

15.2.2 When threads are specified, all threads shall be in accordance with the gaging practice and tolerances of ASME B1.20.1.

15.2.3 When couplings are specified, they shall be manufactured in accordance with Specification A865.

16. Number of Tests

16.1 Two test specimens for the determination of weight of coating shall be taken, one from each end of one length of galvanized pipe, selected at random from each lot of 500 lengths, or fraction thereof, of each size.

16.2 Each length of pipe shall be subjected to one of the tests specified in Section 8 or 9.

16.3 For electric-resistance-welded pipe, tests specified in 10.1.1 shall be made.

16.4 For furnace-welded pipe, the tests specified in 10.1.2 shall be made on one length of pipe from each lot of 25 tons, or fraction thereof, of pipe NPS 1½ [DN 40] and smaller, and from each lot of 50 tons, or fraction thereof, of pipe NPS 2 [DN 50] and larger.

17. Retests

17.1 If the weight of coating of any lot does not conform to the requirements specified in 11.2, retests of two additional pipe from the same lot shall be made, each of which shall conform to the requirements specified.

17.2 If any section of furnace-but welded pipe fails to comply with the requirements of 10.1.2, double the number of tests shall be made, after having rejected the length(s) that exhibit failure. Each of the retests shall conform to the requirements specified.

17.3 If any section of electric-resistance-welded pipe NPS 4 [DN 100] or less fails to comply with the requirements of 10.1.1 for pipe produced in multiple lengths, double the number of tests shall be made, after having rejected the length(s) that exhibit failure. Each of the retests shall conform to the requirements specified.

17.4 If any section of electric-resistance-welded pipe larger than NPS 4 [DN 100] fails to comply with the requirements of 10.1.1 for pipe produced in single lengths, other sections may be cut from the same end of the same length until satisfactory tests are obtained, except that the finished pipe shall not be shorter than 80% of its length after the original cropping; otherwise the length shall be rejected. For pipe produced in multiple lengths, retests may be cut from each end of each individual length in the multiple. Such tests shall be made with the weld alternately 0° and 90° from the line of direction of force. Each length that exhibits failure shall be rejected.

18. Inspection

18.1 The inspector representing the purchaser shall have free entry at all times while work is being performed, to all parts of the manufacturer’s works that concern the manufacture of the material ordered. The manufacturer shall afford the inspector all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. All tests (except product analysis) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

18.2 For Government Procurement Only—Except as otherwise specified in the contract, the contractor is responsible for the performance of all inspection and test requirements specified herein and may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser at the time of purchase. The purchaser shall have the right to perform any of the inspections and tests at the same
frequency as set forth in this specification, where such inspections are deemed necessary to assure that material conforms to prescribed requirements.

19. Rejection

19.1 Each length of pipe received from the manufacturer may be inspected by the purchaser and, if it does not meet the requirements of this specification based on the inspection and test methods as outlined herein, the length may be rejected and the manufacturer shall be notified. Disposition of rejected pipe shall be a matter of agreement between the manufacturer and the purchaser.

19.2 Pipe found in fabrication or in installation to be unsuitable for the intended use, under the scope and requirements of this specification, may be set aside and the manufacturer notified. Such pipe shall be the subject of a mutual investigation as to the nature and severity of the deficiency and the forming or installation, or both conditions involved. Disposition shall be a matter of agreement.

20. Certification

20.1 The producer or supplier shall, upon request, furnish to the purchaser a certificate of inspection stating that the material has been manufactured, sampled, tested, and inspected in accordance with this specification, and has been found to meet the requirements.

21. Product Marking

21.1 Each length of pipe shall be legibly marked by rolling, stamping, or stenciling to show the name or brand of the manufacturer, the kind of pipe, that is, continuous-welded, electric-resistance-welded A, electric-resistance-welded B, seamless A, or seamless B. Grade A or B for Type E or S pipe, the ASTM designation, the length, and the letters “NH” if not hydrostatically tested. Bundled pipe NPS 1½ [DN 40] and smaller may have this information marked on a tag, securely attached to each bundle.

21.2 When pipe sections are cut into shorter lengths by a subsequent processor for resale as material, the processor shall transfer complete identifying information to each unmarked cut length, or to metal tags securely attached to bundles of unmarked small diameter pipe. The same material designation shall be included with the information transferred and the processor’s name, trademark, or brand shall be added.

21.3 Bar Coding—In addition to the requirements in 21.1 and 21.2, bar coding is acceptable as a supplemental identification method. The purchaser may specify in the order a specific bar coding system to be used.

22. Packaging, Package Marking, and Loading

22.1 When specified in the purchase order, packaging, marking, and loading of shipment shall be in accordance with those procedures of Practices A700.

22.2 For Government Procurement—When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of MIL-STD-163. The applicable levels shall be as specified in the contract or order. Marking for shipment of such material shall be in accordance with Fed. Std. No. 123 and MIL-STD-129 for military agencies.

23. Keywords

23.1 black steel pipe; seamless steel pipe; steel pipe; welded steel pipe; zinc coated steel pipe

ANNEX
(Mandatory Information)

A1. DEFINITIONS OF TYPES OF PIPE

A1.1 Type F, Furnace-Welded Pipe, Continuous-Welded—Pipe produced in continuous lengths from coiled skelp and subsequently cut into individual lengths, having its longitudinal butt-joint forge welded by the mechanical pressure developed in rolling the hot-formed skelp through a set of round pass welding rolls.

A1.2 Type E, Electric-Resistance-Welded Pipe—Pipe produced in individual lengths or in continuous lengths from coiled skelp (flat-rolled product) and subsequently cut into individual lengths, having a longitudinal butt joint wherein coalescence is produced by the heat obtained from resistance of the pipe to the flow of electric current in a circuit of which the pipe is a part, and by the application of pressure. Included in this category are induction welded or RF-welded pipe.

A1.3 Type S, Wrought Steel Seamless Pipe—Wrought steel seamless pipe is a tubular product made without a welded seam. It is manufactured by hot working steel and, if necessary, by subsequently cold finishing the hot-worked tubular product to produce the desired shape, dimensions, and properties.
SUMMARY OF CHANGES

Committee A01 has identified the location of selected changes to this specification since the last issue, A795/A795M – 07, that may impact the use of this specification. (Approved May 15, 2008)

1) Revised Section 9 for flux leakage testing.
2) Added reference to Practice E570 in Section 9 and Referenced Documents.

Committee A01 has identified the location of selected changes to this specification since the last issue, A795/A795M – 04, that may impact the use of this specification. (Approved July 1, 2007)

1) Revised 14.2.