Standard Specification for Nickel Rod and Bar

This standard is issued under the fixed designation B160; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

NOTE—Carbon max for UNS N02211 in Table 2 was corrected editorially in March 2011.

1. Scope

1.1 This specification covers nickel (UNS N02200)*, low carbon nickel (UNS N02201)*, and solution strengthened nickel (UNS N02211) in the form of hot-worked and cold-worked rod and bar in the conditions shown in Table 1.

1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B162 Specification for Nickel Plate, Sheet, and Strip
B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
E8 Test Methods for Tension Testing of Metallic Materials
E18 Test Methods for Rockwell Hardness of Metallic Materials
E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
E140 Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness
E1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 bar, n—material of rectangular (flats), hexagonal, or square solid section up to and including 10 in. (254 mm) in width and 1⁄8 in. (3.2 mm) and over in thickness in straight lengths.

NOTE 1—Hot-worked rectangular bar in widths 10 in. (254 mm) and under may be furnished as hot-rolled plate with sheared or cut edges in accordance with Specification B162, provided the mechanical property requirements of Specification B160 are met.

3.1.2 rod, n—material of round solid section furnished in straight lengths.

4. Ordering Information

4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for the safe and satisfactory performance of material ordered under this specification. Examples of such requirements include, but are not limited to, the following:

4.1.1 ASTM designation and year of issue.
4.1.2 UNS number.
4.1.3 Section—Rod (round) or bar (square, hexagonal, or rectangular).
4.1.4 Dimensions—Dimensions including length.
4.1.5 Condition.
4.1.6 Finish.
4.1.7 Quantity—feet or number of pieces.
4.1.8 Certification—State if certification or a report of test results is required (Section 15).
4.1.9 Samples for Product (Check) Analysis—State whether samples for product (check) analysis should be furnished.
4.1.10 Purchaser Inspection—If purchaser wishes to witness tests or inspection of material at place of manufacture, the purchase order must so state indicating which test or inspections are to be witnessed.

* This specification is under the jurisdiction of ASTM Committee B02 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys.

For ASME Boiler and Pressure Vessel Code applications see related Specification SB-160 in Section II of that Code.

New designations established in accordance with ASTM E527 and SAE J1086, Practice for Numbering Metals and Alloys (UNS).

For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.
5. Chemical Composition

5.1 The material shall conform to the composition limits specified in Table 2.

5.2 If a product (check) analysis is performed by the purchaser, the material shall be done per Specification B880 and the material shall conform to the product (check) analysis variations defined in Check Analysis Variation table of Specification B880.

6. Mechanical and Other Requirements

6.1 Mechanical Properties—The material shall conform to the mechanical properties specified in Table 1.

7. Dimensions and Permissible Variations

7.1 Diameter, Thickness, or Width—The permissible variations from the specified dimensions as measured on the diameter or between parallel surfaces of cold-worked rod and bar shall be as prescribed in Table 3, and of hot-worked rod and bar as prescribed in Table 4.

TABLE 2 Chemical Requirements

<table>
<thead>
<tr>
<th>Element</th>
<th>Nickel (UNS N02200)</th>
<th>Low-Carbon Nickel (UNS N02201)</th>
<th>Solution Strengthened Nickel (UNS N02211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel, min⁴</td>
<td>99.0</td>
<td>99.0</td>
<td>93.7</td>
</tr>
<tr>
<td>Copper, max</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Iron, max</td>
<td>0.40</td>
<td>0.40</td>
<td>0.75</td>
</tr>
<tr>
<td>Manganese, max</td>
<td>0.35</td>
<td>0.35</td>
<td>4.25 – 5.25</td>
</tr>
<tr>
<td>Carbon, max</td>
<td>0.15†</td>
<td>0.02</td>
<td>0.20†</td>
</tr>
<tr>
<td>Silicon, max</td>
<td>0.35</td>
<td>0.35</td>
<td>0.15</td>
</tr>
<tr>
<td>Sulfur, max</td>
<td>0.01</td>
<td>0.01</td>
<td>0.015</td>
</tr>
</tbody>
</table>

⁴ Element shall be determined arithmetically by difference.
† Carbon max value for UNS N02200 was corrected editorially.
† Carbon max value for UNS N02211 was corrected editorially.

TABLE 3 Permissible Variations in Diameter or Distance Between Parallel Surfaces of Cold-Worked Rod and Bar

<table>
<thead>
<tr>
<th>Specified Dimension, in. (mm)²</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounds:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¼ (6.4) to ½ (12.7), excl.</td>
<td>0</td>
<td>0.002 (0.05)</td>
</tr>
<tr>
<td>½ (12.7) to ¾ (19.1), incl.</td>
<td>0.0015 (0.04)</td>
<td>0.003 (0.08)</td>
</tr>
<tr>
<td>Over ¾ (19.1) to 1 (25.4), incl.</td>
<td>0.0005 (0.02)</td>
<td>0.003 (0.08)</td>
</tr>
<tr>
<td>Over 1 (25.4) to 1½ (38.1), incl</td>
<td>0.0035 (0.09)</td>
<td>0.007 (0.18)</td>
</tr>
<tr>
<td>Over 1½ (38.1) to 2 (50.8), incl</td>
<td>0</td>
<td>0.009 (0.23)</td>
</tr>
<tr>
<td>Over 2 (50.8) to 2½ (63.5), incl</td>
<td>0</td>
<td>0.011 (0.28)</td>
</tr>
<tr>
<td>Over 2½ (63.5) to 3 (76.2), incl</td>
<td>0</td>
<td>0.015 (0.38)</td>
</tr>
<tr>
<td>Over 3 (76.2) to 5 (127.0), incl</td>
<td>0</td>
<td>0.017 (0.43)</td>
</tr>
</tbody>
</table>

² Dimensions apply to diameter of rounds, to distance between parallel surfaces of hexagons and squares, and separately to width and thickness of rectangles.

TABLE 4 Tensile Strength

<table>
<thead>
<tr>
<th>Condition and Diameter or Distance Between Parallel Surfaces, in. (mm)</th>
<th>Tensile Strength, min, psi (MPa)</th>
<th>Yield Strength (0.2 % offset), min. psi (MPa)⁴</th>
<th>Elongation in 2 in. or 50 mm or 4D, min %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold-worked (as worked):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rounds, 1 (25.4) and under</td>
<td>80 000 (550)</td>
<td>60 000 (415)</td>
<td>10²</td>
</tr>
<tr>
<td>Rounds over 1 to 4 (25.4 to 101.6) incl.</td>
<td>75 000 (515)</td>
<td>50 000 (345)</td>
<td>15</td>
</tr>
<tr>
<td>Squares, hexagons, and rectangles, all sizes</td>
<td>65 000 (450)</td>
<td>40 000 (275)</td>
<td>25²</td>
</tr>
<tr>
<td>Hot-worked:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All sections, all sizes</td>
<td>60 000 (415)</td>
<td>15 000 (105)</td>
<td>35C</td>
</tr>
<tr>
<td>Rings and disks²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annealed:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rods and bars, all sizes</td>
<td>55 000 (380)</td>
<td>15 000 (105)</td>
<td>40²</td>
</tr>
<tr>
<td>Rings and disks²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forging quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All sizes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁴ See 12.2.
² Not applicable to diameters or cross sections under ½₄ in. (2.4 mm).
² For hot-worked flats 5/₄₆ in. (7.9 mm) and under in thickness the elongation shall be 25 %, min.
² Hardness B45 to B80, or equivalent.
² Hardness B45 to B70 or equivalent.
⁵ Forging quality is furnished to chemical requirements and surface inspection only. No tensile properties are required.

7.2 Out-of-Round—Hot-worked rods and cold-worked rods (except “forging quality”), all sizes, in straight lengths, shall not be out-of-round by more than one half the total permissible variations in diameter shown in Tables 3 and 4, except for hot-worked rods ½ in. (12.7 mm) in diameter and under, which may be out-of-round by the total permissible variations in diameter shown in Table 4.

7.3 Corners—Cold-worked bars will have practically exact angles and sharp corners.

7.4 Machining Allowances for Hot-Worked Materials—When the surfaces of hot-worked products are to be machined, the allowances prescribed in Table 5 are recommended for normal machining operations.
7.5 Length—The permissible variations in length of cold-worked and hot-worked rod and bar shall be as prescribed in Table 6.

7.5.1 Rods and bars ordered to random or nominal lengths will be furnished with either cropped or saw-cut ends; material ordered to cut lengths will be furnished with square saw-cut or machined ends.

7.6 Straightness:

7.6.1 The permissible variations in straightness of cold-worked rod and bar as determined by the departure from straightness shall be as prescribed in Table 7.

7.6.2 The permissible variations in straightness of precision straightened cold-worked rod as determined by the departure from straightness shall be as prescribed in Table 8.

7.6.2.1 In determining straightness in the standard 42-in. (1.07-m) distance between supports or, when specified, in determining straightness in lengths not in excess of those shown in Table 8, the rod shall be placed on a precision table equipped with ballbearing rollers and a micrometer or dial indicator. The rod shall then be rotated slowly against the indicator, and the deviation from straightness in any portion of the rod between the supports shall not exceed the permissible variations prescribed in Table 8. The deviation from straightness (throw in one revolution) is defined as the difference between the maximum and minimum readings of the dial indicator in one complete revolution of the rod.

7.6.3 The permissible variations in straightness of hot-worked rod and bar as determined by the departure from straightness shall be as specified in Table 9.

8. Workmanship, Finish, and Appearance

8.1 The material shall be uniform in quality and condition, smooth, commercially straight or flat, and free of injurious imperfections.

9. Sampling

9.1 Lot—Definition:

9.2 A lot for chemical analysis shall consist of one heat.

9.2.1 A lot for mechanical properties testing shall consist of all material from the same heat, nominal diameter of thickness, and condition.

9.2.1.1 Where material cannot be identified by heat, a lot shall consist of not more than 500 lb (227 kg) of material in the same size and condition.

9.3 Test Material Selection:

9.3.1 Chemical Analysis—Representative samples from each lot shall be taken during pouring or subsequent processing.

9.3.1.1 Product (check) analysis shall be wholly the responsibility of the purchaser.

9.3.2 Mechanical Properties—Samples of the material to provide test specimens for mechanical properties shall be taken from such locations in each lot as to be representative of that lot.

10. Number of Tests

10.1 Chemical Analysis—One test per lot.

10.2 Tension—One test per lot.

10.3 Hardness—One test per lot.

11. Specimen Preparation

11.1 Tension test specimens shall be taken from material in the final condition and tested in the direction of fabrication.

11.1.1 All rod and bar shall be tested in full cross-section size when possible. When a full cross-section size test cannot be performed, the largest possible round specimen shown in Test Methods E8 shall be used. Longitudinal strip specimens shall be prepared in accordance with Test Methods E8 for rectangular bar up to ½ in. (12.7 mm), inclusive, in thicknesses that are too wide to be pulled full size.

11.2 Hardness test specimens shall be taken from material in the final condition.

11.3 In order that the hardness determinations may be in reasonable close agreement, the following procedure is suggested:

11.3.1 For rod, under ½ in. (12.7 mm) in diameter, hardness readings shall be taken on a flat surface prepared by filing or grinding approximately ¼ in. (1.6 mm) from the outside surface of the rod.

11.3.2 For rod, ½ in. (12.7 mm) in diameter and larger, and for hexagonal, square, and rectangular bar, all sizes, hardness readings shall be taken on a cross section midway between the surface and center of the section.

12. Test Methods

12.1 The chemical composition, mechanical, and other properties of the material as enumerated in this specification shall be determined, in case of disagreement, in accordance with the following methods:

<table>
<thead>
<tr>
<th>Test</th>
<th>ASTM Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Analysis</td>
<td>E1473</td>
</tr>
<tr>
<td>Tension</td>
<td>E8</td>
</tr>
<tr>
<td>Rockwell Hardness</td>
<td>E18</td>
</tr>
<tr>
<td>Hardness Conversion</td>
<td>E140</td>
</tr>
<tr>
<td>Rounding Procedure</td>
<td>E29</td>
</tr>
</tbody>
</table>
12.2 For purposes of determining compliance with the specified limits for the properties listed in the following table, an observed value or a calculated value shall be rounded as indicated below, in accordance with the rounding method of Practice E29:

<table>
<thead>
<tr>
<th>Test</th>
<th>Rounded Unit for Observed Or Calculated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition, hardness, and tolerances (when expressed in decimals)</td>
<td>Nearest unit in the last right-hand place of figures of the specified limit. If two choices are possible, as when the digits dropped are exactly a 5, or a 5 followed only by zeros, choose the one ending in an even digit, with zero defined as an even digit.</td>
</tr>
<tr>
<td>Tensile strength and yield strength</td>
<td>Nearest 1000 psi (6.9 MPa)</td>
</tr>
<tr>
<td>Elongation</td>
<td>Nearest 1 %</td>
</tr>
</tbody>
</table>

13. Inspection

13.1 Inspection of the material shall be made as agreed upon between the manufacturer and the purchaser as part of the purchase contract.

14. Rejection and Rehearing

14.1 Material that fails to conform to the requirements of this specification may be rejected. Rejection should be reported to the producer or supplier promptly and in writing. In case of dissatisfaction with the results of the test, the producer or supplier may make claim for a rehearing.
15. Certification

15.1 When specified in the purchase order or contract, a manufacturer’s certification shall be furnished to the purchaser stating that material has been manufactured, tested, and inspected in accordance with this specification, and that the test results on representative samples meet specification requirements. When specified in the purchase order or contract, a report of the test results shall be furnished.

16. Product Marking

16.1 The following information shall be marked on the material or included on the package, or on a label or tag attached thereto: The name of the material or UNS Number, heat number, condition (temper), ASTM Specification B160, the size, gross, tare, and net weight, consignor and consignee address, contract or order number, or such other information as may be defined in the contract or order.

17. Keywords

17.1 bar; rod; N02200; N02201; N02211

APPENDIX

(Nonmandatory Information)

XI. CONDITIONS AND FINISHES

X1.1 The various conditions and finishes in which nickel (UNS N02200) and low-carbon nickel (UNS N02201) rods and bars are procurable are as indicated below.

X1.2 Low-carbon nickel (UNS N02201) is intended essentially for fused caustic and other fused salts and for temperatures above 600°F (316°C). For such applications the manufacturer should be consulted.

X1.2.1 Hot-Worked—With a tightly adherent, black, mill oxide surface.

X1.2.2 Hot-Worked Rough-Ground—Similar to X1.2.1 except rough-ground.

X1.2.3 Hot-Worked, Rough-Turned—Similar to X1.2.1 except rough-turned with a broad-nosed tool similar to a bar peeling operation and thus may not be straight. Intended generally for machining where an overhauled surface is desired, essentially for machined step down shafts or parts machined in short lengths of 3 ft (914 mm) or less.
X1.2.4 Hot-Worked Forging Quality—Rough-turned and spot-ground, as necessary, for sizes 1 in. (25.4 mm) in diameter and over; rough-ground and spot-ground for sizes under 1 in. in diameter. Material is selected from heats of known, good hot malleability.

Note X1.1—For sizes 4 in. (101.6 mm) in diameter and less, cold-worked rod may be used also for forging by virtue of the fact such rod have been overhauled for removal of mechanical surface defects prior to cold drawing. In such cases, the user should run pilot forging tests to ensure himself that such material has the desired hot-malleability range.

X1.2.5 Hot-Worked, Annealed—Soft with a tightly adherent oxide that may vary from dark to light.

X1.2.6 Hot-Worked, Annealed and Pickled—Same as X1.2.5 except descaled for removal of mill oxide. Provides for better surface inspection than does hot-worked material and often employed where welding is involved where removal of mill oxide is desired.

Note X1.2—Annealing prior to pickling may be required in order to reduce the mill oxide since uniform pickling of an unreduced oxide is difficult.

X1.2.7 Cold-Worked, As-worked—Hot-worked overhauled, cold-worked, and straightened with a smooth bright finish.

X1.2.8 Cold-worked Annealed—Hot-worked overhauled, cold-worked, and straightened. Annealed for softness and with a dull matte finish.