Standard Specification for Titanium and Titanium Alloy Forgings

This standard is issued under the fixed designation B381; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

NOTE—Footnote I in Table 1 was corrected editorially in March 2011.

1. Scope

1.1 This specification covers 39 grades of annealed titanium and titanium alloy forgings as follows:

1.1.1 Grade F-1—Unalloyed titanium,

1.1.2 Grade F-2—Unalloyed titanium,

1.1.2.1 Grade F-2H—Unalloyed titanium (Grade 2 with 58 ksi minimum UTS),

1.1.3 Grade F-3—Unalloyed titanium,

1.1.4 Grade F-4—Unalloyed titanium,

1.1.5 Grade F-5—Titanium alloy (6 % aluminum, 4 % vanadium),

1.1.6 Grade F-6—Titanium alloy (5 % aluminum, 2.5 % tin),

1.1.7 Grade F-7—Unalloyed titanium plus 0.12 to 0.25 % palladium,

1.1.7.1 Grade F-7H—Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi minimum UTS),

1.1.8 Grade F-9—Titanium alloy (3 % aluminum, 2.5 % vanadium),

1.1.9 Grade F-11—Unalloyed titanium plus 0.12 to 0.25 % palladium,

1.1.10 Grade F-12—Titanium alloy (0.3 % molybdenum, 0.8 % nickel),

1.1.11 Grade F-13—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),

1.1.12 Grade F-14—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),

1.1.13 Grade F-15—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),

1.1.14 Grade F-16—Unalloyed titanium plus 0.04 to 0.08 % palladium,

1.1.14.1 Grade F-16H—Unalloyed titanium plus 0.04 to 0.08 % palladium (Grade 16 with 58 ksi minimum UTS),

1.1.15 Grade F-17—Unalloyed titanium plus 0.04 to 0.08 % palladium,

1.1.16 Grade F-18—Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 % to 0.08 % palladium,

1.1.17 Grade F-19—Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum),

1.1.18 Grade F-20—Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum) plus 0.04 to 0.08 % palladium,

1.1.19 Grade F-21—Titanium alloy (3 % aluminum, 2.7 % niobium, 15 % molybdenum, 0.25 % silicon),

1.1.20 Grade F-23—Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitials, ELI),

1.1.21 Grade F-24—Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.04 to 0.08 % palladium,

1.1.22 Grade F-25—Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.3 to 0.8 % nickel and 0.04 to 0.08 % palladium,

1.1.23 Grade F-26—Unalloyed titanium plus 0.08 to 0.14 % ruthenium,

1.1.23.1 Grade F-26H—Unalloyed titanium plus 0.08 to 0.14 % ruthenium (Grade 26 with 58 ksi minimum UTS),

1.1.24 Grade F-27—Unalloyed titanium plus 0.08 to 0.14 % ruthenium,

1.1.25 Grade F-28—Titanium alloy (3 % aluminum, 2.5 % vanadium plus 0.08 to 0.14 % ruthenium),

1.1.26 Grade F-29—Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitial, ELI plus 0.08 to 0.14 % ruthenium),

1.1.27 Grade F-30—Titanium alloy (0.3 % cobalt, 0.05 % palladium),

1.1.28 Grade F-31—Titanium alloy (0.3 % cobalt, 0.05 % palladium),

1.1.29 Grade F-32—Titanium alloy (5 % aluminum, 1 % vanadium, 1 % tin, 1 % zirconium, 0.8 % molybdenum),

1.1.30 Grade F-33—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),

1.1.31 Grade F-34—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),

1.1.32 Grade F-35—Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),

1.1.33 Grade F-36—Titanium alloy (45 % niobium),
1.1.34 Grade F-37—Titanium alloy (1.5 % aluminum), and
1.1.35 Grade F-38—Titanium alloy (4 % aluminum, 2.5 %
vanadium, 1.5 % iron).

Note 1—H grade material is identical to the corresponding numeric
grade (that is, Grade 2H = Grade 2) except for the higher guaranteed
minimum UTS, and may always be certified as meeting the requirements
of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are
intended primarily for pressure vessel use.

1.2 The values stated in inch-pound units are to be regarded
as standard. The values given in parentheses are mathematical
conversions to SI units that are provided for information only
and are not considered standard.

2. Referenced Documents

2.1 ASTM Standards:3

B348 Specification for Titanium and Titanium Alloy Bars
and Billets

E8 Test Methods for Tension Testing of Metallic Materials

E29 Practice for Using Significant Digits in Test Data to

Determine Conformance with Specifications

E539 Test Method for Analysis of Titanium Alloys by X-Ray

Fluorescence Spectrometry

E1409 Test Method for Determination of Oxygen and Nitro-

gen in Titanium and Titanium Alloys by the Inert Gas

Fusion Technique

E1447 Test Method for Determination of Hydrogen in Titan-

ium and Titanium Alloys by Inert Gas Fusion Thermal

Conductivity/Infrared Detection Method

E1941 Test Method for Determination of Carbon in Refrac-

tory and Reactive Metals and Their Alloys by Combustion

Analysis

E2371 Test Method for Analysis of Titanium and Titanium

Alloys by Atomic Emission Plasma Spectrometry

E2626 Guide for Spectrometric Analysis of Reactive and

Refractory Metals

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 bar, n—a hot rolled, forged or cold worked semi-

finesh product whose cross sectional area is less

than 16 in.2 (10 323 mm²).

3.1.2 billet, n—a solid semifinished section, hot rolled or

forged from an ingot, with a cross sectional area greater than 16

in.2 (10 323 mm²).

3.1.3 forging, n—any product of work on metal formed to

desired shape by impact or pressure in hammers, forging

machines, upsetters presses or related forming equipment.

4. Ordering Information

4.1 Orders for forgings under this specification shall include

the following information, as applicable:

4.1.1 Grade number (Section 1),

4.1.2 Tensile properties (Table 1),

4.1.3 Dimensions and tolerances (Section 10),

4.1.4 Sampling, mechanical properties (Section 8),

4.1.5 Methods for chemical analysis (Section 6),

4.1.6 Marking (Section 17),

4.1.7 Packaging (Section 17),

4.1.8 Certification (Section 16),

4.1.9 Disposition of rejected material (Section 14), and

4.1.10 Supplementary requirements (S1).

5. Materials and Manufacture

5.1 Material conforming to the latest revision of Specification

B348 shall be used when producing forgings to this

specification.

6. Chemical Composition

6.1 The grades of titanium and titanium alloy metal covered

by this specification shall conform to the requirements as to

chemical composition prescribed in Table 2.

6.1.1 The elements listed in Table 2 are intentional alloy

additions or elements which are inherent to the manufacturer of

titanium sponge, ingot or mill product.

6.1.1.1 Elements other than those listed in Table 2 are
deemed to be capable of occurring in the grades listed in Table

2 by and only by way of unregulated or unanalyzed scrap

additions to the ingot melt. Therefore, product analysis for

elements not listed in Table 2 shall not be required unless

specified and shall be considered to be in excess of the intent

of this specification.

6.1.2 Elements intentionally added to the melt must be

identified, analyzed, and reported in the chemical analysis.

6.2 When agreed upon by the producer and purchaser and

requested by the purchaser in his written purchase order,

chemical analysis shall be completed for specific residual

elements not listed in this specification.

6.3 Product Analysis—Product analysis tolerances do not

broaden the specified heat analysis requirements, but cover

variations between laboratories in the measurement of chemi-

cal content. The manufacturer shall not ship material which is

outside the limits specified in Table 2 for the applicable grade.

Product analysis limits shall be as specified in Table 3.

6.4 Sampling—Samples for chemical analysis shall be rep-

resentative of material being tested. Except for hydrogen and

unless otherwise specified, chemical analysis of ingot or billet
shall be reported. Samples for hydrogen determination shall be

obtained from the forgings on a test basis and a frequency as

agreed upon between the forger and the purchaser. The utmost

care must be used in sampling titanium for chemical analysis

because of its great affinity for elements such as oxygen,

nitrogen, and hydrogen. Therefore, the cutting and handling of

samples should include practices that will prevent conta-

mination. Samples shall be collected from clean metal.

6.5 At least two samples for chemical analysis shall be

tested to determine chemical composition. Samples shall be

taken from opposite extremes of the product to be analyzed.
7. Methods of Chemical Analysis

7.1 The chemical analysis shall normally be conducted using the ASTM standard test methods referenced in 2.1. Other industry standard methods may be used where the ASTM test methods in 2.1 do not adequately cover the elements in the
<table>
<thead>
<tr>
<th>Grade</th>
<th>Carbon, max.</th>
<th>Oxygen, range or max.</th>
<th>Nitrogen, Hydrogen, max.</th>
<th>Iron, range or max.</th>
<th>Aluminum</th>
<th>Vanadium</th>
<th>Palladium</th>
<th>Ruthenium</th>
<th>Nickel</th>
<th>Molybdenum</th>
<th>Chromium</th>
<th>Cobalt</th>
<th>Zirconium</th>
<th>Niobium</th>
<th>Tin</th>
<th>Silicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1</td>
<td>0.08</td>
<td>0.18</td>
<td>0.015</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>F-2</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-2H</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-3</td>
<td>0.08</td>
<td>0.35</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-4</td>
<td>0.08</td>
<td>0.40</td>
<td>0.015</td>
<td>0.50</td>
<td>5.5-6.75</td>
<td>3.5-4.5</td>
<td></td>
</tr>
<tr>
<td>F-5</td>
<td>0.08</td>
<td>0.20</td>
<td>0.015</td>
<td>0.40</td>
<td>4.0-6.0</td>
<td></td>
</tr>
<tr>
<td>F-6</td>
<td>0.08</td>
<td>0.20</td>
<td>0.015</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>F-7</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-7H</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-9</td>
<td>0.08</td>
<td>0.15</td>
<td>0.015</td>
<td>0.25</td>
<td>2.5-3.5</td>
<td>2.0-3.0</td>
<td></td>
</tr>
<tr>
<td>F-11</td>
<td>0.08</td>
<td>0.18</td>
<td>0.015</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>F-12</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-13</td>
<td>0.08</td>
<td>0.10</td>
<td>0.015</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>F-14</td>
<td>0.08</td>
<td>0.15</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-15</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-16</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-16H</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-17</td>
<td>0.08</td>
<td>0.18</td>
<td>0.015</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>F-18</td>
<td>0.08</td>
<td>0.15</td>
<td>0.015</td>
<td>0.25</td>
<td>2.5-3.5</td>
<td>2.0-3.0</td>
<td></td>
</tr>
<tr>
<td>F-19</td>
<td>0.05</td>
<td>0.12</td>
<td>0.02</td>
<td>0.30</td>
<td>3.0-4.0</td>
<td>7.5-8.5</td>
<td></td>
</tr>
<tr>
<td>F-20</td>
<td>0.05</td>
<td>0.12</td>
<td>0.02</td>
<td>0.30</td>
<td>3.0-4.0</td>
<td>7.5-8.5</td>
<td></td>
</tr>
<tr>
<td>F-21</td>
<td>0.05</td>
<td>0.17</td>
<td>0.03</td>
<td>0.40</td>
<td>2.5-3.5</td>
<td></td>
</tr>
<tr>
<td>F-23</td>
<td>0.08</td>
<td>0.13</td>
<td>0.0125</td>
<td>0.25</td>
<td>5.5-6.5</td>
<td>3.5-4.5</td>
<td></td>
</tr>
<tr>
<td>F-24</td>
<td>0.08</td>
<td>0.20</td>
<td>0.015</td>
<td>0.40</td>
<td>5.5-6.75</td>
<td>3.5-4.5</td>
<td></td>
</tr>
<tr>
<td>F-25</td>
<td>0.08</td>
<td>0.20</td>
<td>0.015</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>F-26</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-26H</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-27</td>
<td>0.08</td>
<td>0.18</td>
<td>0.015</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>F-28</td>
<td>0.08</td>
<td>0.15</td>
<td>0.015</td>
<td>0.25</td>
<td>2.5-3.5</td>
<td>2.0-3.0</td>
<td></td>
</tr>
<tr>
<td>F-29</td>
<td>0.08</td>
<td>0.13</td>
<td>0.0125</td>
<td>0.25</td>
<td>5.5-6.5</td>
<td>3.5-4.5</td>
<td></td>
</tr>
<tr>
<td>F-30</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-31</td>
<td>0.08</td>
<td>0.35</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-32</td>
<td>0.08</td>
<td>0.11</td>
<td>0.015</td>
<td>0.25</td>
<td>4.5-5.5</td>
<td>0.6-1.4</td>
<td></td>
</tr>
<tr>
<td>F-33</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-34</td>
<td>0.08</td>
<td>0.35</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-35</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.20-0.80</td>
<td>4.0-5.0</td>
<td>1.1-2.1</td>
<td></td>
</tr>
<tr>
<td>F-36</td>
<td>0.08</td>
<td>0.16</td>
<td>0.015</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>F-37</td>
<td>0.08</td>
<td>0.25</td>
<td>0.015</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>F-38</td>
<td>0.08</td>
<td>0.20-0.30</td>
<td>0.015</td>
<td>1.2-1.8</td>
<td>3.5-4.5</td>
<td>2.0-3.0</td>
<td></td>
</tr>
</tbody>
</table>

At minimum, the analysis of samples from the top and bottom of the ingot shall be completed and reported for all elements listed for the respective grade in this table.

Final product hydrogen shall be reported. Ingot hydrogen need not be reported. Lower hydrogen may be obtained by negotiation with the manufacturer.

Single values are maximum. The percentage of titanium is determined by difference.

Other elements need not be reported unless the concentration level is greater than 0.1 % each, or 0.4 % total. Other elements may not be added intentionally. Other elements may be present in titanium or titanium alloys in small quantities and are inherent to the manufacturing process. In titanium these elements typically include aluminum, vanadium, tin, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

The purchaser may, in the written purchase order, request analysis for specific residual elements not listed in this specification.
TABLE 3 Permissible Variations in Product Analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>Product Analysis Limits, max or Range, %</th>
<th>Permissible Variation in Product Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.5 to 2.5</td>
<td>±0.20</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.5 to 6.75</td>
<td>±0.40</td>
</tr>
<tr>
<td>Carbon</td>
<td>0.10</td>
<td>±0.02</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.1 to 0.2</td>
<td>±0.02</td>
</tr>
<tr>
<td>Chromium</td>
<td>5.5 to 6.5</td>
<td>±0.30</td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.2 to 0.8</td>
<td>±0.05</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.02</td>
<td>±0.002</td>
</tr>
<tr>
<td>Iron</td>
<td>0.80</td>
<td>±0.15</td>
</tr>
<tr>
<td>Iron</td>
<td>1.2 to 1.8</td>
<td>±0.20</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.2 to 0.4</td>
<td>±0.03</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.6 to 1.2</td>
<td>±0.15</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>1.5 to 4.5</td>
<td>±0.20</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>14.0 to 16.0</td>
<td>±0.50</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.3 to 0.9</td>
<td>±0.05</td>
</tr>
<tr>
<td>Niobium</td>
<td>2.2 to 3.2</td>
<td>±0.15</td>
</tr>
<tr>
<td>Niobium</td>
<td>>30</td>
<td>±0.50</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.05</td>
<td>±0.02</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.30</td>
<td>±0.03</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.31 to 0.40</td>
<td>±0.04</td>
</tr>
<tr>
<td>Palladium</td>
<td>0.01 to 0.02</td>
<td>±0.002</td>
</tr>
<tr>
<td>Palladium</td>
<td>0.04 to 0.08</td>
<td>±0.005</td>
</tr>
<tr>
<td>Palladium</td>
<td>0.12 to 0.25</td>
<td>±0.02</td>
</tr>
<tr>
<td>Ruthenium</td>
<td>0.02 to 0.04</td>
<td>±0.005</td>
</tr>
<tr>
<td>Ruthenium</td>
<td>0.04 to 0.06</td>
<td>±0.005</td>
</tr>
<tr>
<td>Ruthenium</td>
<td>0.08 to 0.14</td>
<td>±0.01</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.06 to 0.40</td>
<td>±0.02</td>
</tr>
<tr>
<td>Tin</td>
<td>0.6 to 3.0</td>
<td>±0.15</td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.6 to 4.5</td>
<td>±0.15</td>
</tr>
<tr>
<td>Vanadium</td>
<td>7.5 to 8.5</td>
<td>±0.40</td>
</tr>
<tr>
<td>Zirconium</td>
<td>0.6 to 1.4</td>
<td>±0.15</td>
</tr>
<tr>
<td>Zirconium</td>
<td>3.5 to 4.5</td>
<td>±0.20</td>
</tr>
<tr>
<td>Residuals(^A) (each)</td>
<td>0.15</td>
<td>±0.02</td>
</tr>
</tbody>
</table>

\(^A\) A residual is an element present in a metal or an alloy in small quantities and is inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, iron, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

1. Dimensions and Permissible Variations

10.1 Dimensions and tolerances of titanium and titanium alloy forgings covered by this specification shall be as shown on the applicable forging drawing or otherwise agreed upon by the manufacturer and the purchaser.

11. Workmanship, Finish, and Appearance

11.1 Titanium alloy forgings shall be free of injurious external and internal imperfections of a nature that will interfere with the purpose for which they are intended. Annealed forgings may be furnished as descaled, sandblasted, or ground. The manufacturer shall be permitted to remove minor surface imperfections by spot grinding if such grinding does not reduce the thickness of the forging below the minimum permitted by the tolerance for the forging at the applicable location.

12. Retests

12.1 If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, then the retest values will become the test values for certification. Only original conforming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 14.

13. Rounding-Off Procedure

13.1 For purposes of determining conformance with this specification, an observed or a calculated value shall be rounded off to the nearest “unit” in the last right-hand significant digit used in expressing the limiting value. This is in accordance with the round-off method of Practice E29.

14. Rejection

14.1 Forgings not conforming to this specification or to authorized modifications shall be subject to rejection. Unless otherwise specified, rejected forgings may be returned to the manufacturer at the manufacturer’s expense, unless the purchaser receives, within three weeks of notice of rejection, other instructions for disposition.

15. Referee Test and Analysis

15.1 In the event of disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification, a mutually acceptable referee shall perform the tests in question using the ASTM standard methods in 2.1. The referee’s testing shall be used in determining conformance of the material to this specification.

16. Certification

16.1 The manufacturer shall supply at least one copy of the report certifying that the material supplied has been manufactured, inspected, sampled, and tested in accordance with the requirements of this specification and that the results...
of chemical analysis, tensile, and other tests meet the requirements of the specification for the grade specified. The report shall include results of all chemical analysis, tensile tests, and all other tests required by the specification.

17. Packaging and Package Marking

17.1 Packaging—Unless otherwise specified, forgings purchased under this specification shall be packaged in accordance with the manufacturer’s standard practice.

17.2 Marking—Forgings shall be marked for identification as agreed upon by the manufacturer and the purchaser.

18. Keywords

18.1 forgings; titanium; titanium alloys

SUPPLEMENTARY REQUIREMENTS

SUPPLEMENTARY REQUIREMENTS COVERING GRADE F3 TITANIUM FORGINGS

The following supplementary requirements are primarily intended for U.S. military applications and shall apply only when specified by the purchaser in the inquiry, contract, or order.

S1. U.S. Military Requirements

S1.1 Referenced Documents section follows.

S1.2 Unless otherwise specified in the contract or purchase order, the seller is responsible for the performance of all inspection and test requirements in this specification, and the seller may use his or other suitable facilities for the performance of the inspection and testing.

S1.3 Grade F-3 composition shall be modified as follows:

<table>
<thead>
<tr>
<th>Element</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>0.0125 max</td>
</tr>
<tr>
<td>Iron</td>
<td>0.20 max</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.26 max</td>
</tr>
</tbody>
</table>

S1.4 Two tensile specimens shall be taken from each lot of forgings up to and 125 pounds, and two tensile specimens shall be taken from each forging greater than 125 pounds for verification of compliance with Grade F-3 mechanical properties of Table 3. A lot shall constitute all forgings from the same heat, of the same design and size and heat treated in the same heat treat furnace load. The test specimens shall be taken from integral prolongations or extra forgings may be provided by the forger. Forgings under 3½ in. (90 mm) in cross section may use separately forged test bars provided the wall thickness and amount of working are equivalent to the forgings being supplied. Extra forgings may be provided for samples when forgings are over 3½ in. (90 mm) in cross section provided samples cannot be taken from prolongations or by trepanning. Samples shall be taken from the section of forging having the largest cross section. The longitudinal axis of the tensile specimens shall be parallel to the major direction of metal flow in the forging.

S1.5 Repair welding is not permitted.

S1.6 Each forging shall be ultrasonically inspected in accordance with MIL-STD-2154 throughout 100 % of their volume. Inspection shall be performed after heat treating when the forging is machined to the configuration for ultrasonic inspection as shown on the forging sketch or drawing. Inspection shall be performed prior to drilling holes, cutting keyways, tapers, grooves, or machining section to final contour. Forgings shall be scanned using a straight beam technique such that all major planes are covered. Disc type forgings shall be scanned using a straight beam from at least one flat face and radially from the circumference when possible. Cylindrical, ring, and hollow forgings shall be scanned from the entire external surface using the straight beam technique, and in the axial direction to the maximum extent possible. Acceptance criteria shall be to class A of MIL-STD-2154.

S1.7 All surfaces of each forging shall be liquid penetrant inspected in accordance with NAVSEA T9074-AS-GIB-010/271. Acceptance criteria shall be in accordance with NAVSEA S9074-AR-GIB-010/278 as specified in the order.

S1.8 Forgings shall be free of foreign material and contaminants such as sulfur, lead, marking paints or machining or forming lubricants. Forgings shall be cleaned prior to any heat treatment operations. Forgings shall be free of any oxygen rich layer, such as alpha case.

S1.9 The first forging of each type and design submitted for inspection shall be the first article sample. Mechanical properties for first article inspections shall be determined throughout the forging as specified in the order (which should also include specific instructions regarding arrangements for examinations, approval of test results, and disposition of the first article samples), and the number and location of the test specimens and the acceptance criteria shall be as specified or as agreed upon between the contracting activity and the manufacturer. In addition, A full cross-section shall be macroetched in accordance with ASTM E340 and examined at 10x magnification for uniformity, soundness, grain size and grain flow. The macro etch cross section shall evidence uniformity of quality, soundness and freedom from cracks and porosity. A fully wrought structure shall be evident and variation in grain size shall be such that it will not interfere with ultrasonic examination.
The manufacturer shall maintain a record of production practices used for the first article forging. In the event of change in the production practice in the same or subsequent order, the manufacturer shall notify the contracting activity and obtain approval of the changes. The manufacturer may be required to perform specific first article tests and examinations to verify that the change will not or has not degraded forging quality.

S1.10 The material shall be electron beam and/or plasma melted or shall be multiple melted with at least one of the melting cycles under vacuum.

S2. Referenced Documents

S2.1 ASTM Standard:
E340 Test Method for Macroetching Metals and Alloys

S2.2 Military Standards:
T9074–AS-GIB-010/271 Requirements for Nondestructive Testing Methods
S9074–AR-GIB-010/278 Requirements for Fabrication Welding and Inspection, and Casting Inspection and Repair for Machinery, Piping, and Pressure Vessels
MIL-STD-2154 Inspection, Ultrasonic, Wrought Metals, Processing for

SUMMARY OF CHANGES

Committee B10 has identified the location of selected changes to this standard since the last issue (B381 - 09) that may impact the use of this standard. (Approved May 1, 2010.)

(1) Table 2 — Increased the allowable hydrogen in Ti Grade 36 from 35 ppm to 150 ppm.

Committee B10 has identified the location of selected changes to this standard since the last issue (B381 – 08a) that may impact the use of this standard. (Approved May 1, 2009.)

(1) Chemistry Table 1 was reformatted for improved utility. "Other Elements" replaced "Residual Elements" and notes were editorially revised and reorganized.

(2) Changed F-25 hydrogen from 0.0125 to 0.015.

(3) Changed F-29 hydrogen from 0.015 to 0.0125.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT?).