Standard Specification for
Steel Wire, Chromium-Silicon Alloy

1. Scope

1.1 This specification covers round and shaped chromium-silicon alloy steel spring wire having properties and quality intended for the manufacture of springs resistant to set when used at moderately elevated temperatures. This product is not meant to be used for non-static applications involving moderate fatigue stresses (see Specification A1000) or high cycle fatigue applications (see Specification A877/A877M). This wire shall be provided either in the annealed and cold-drawn or quenched and tempered condition as specified by the purchaser.

1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.2.1 Within the text, the inch-pound units are shown in brackets.

2. Referenced Documents

2.1 ASTM Standards:

A370 Test Methods and Definitions for Mechanical Testing of Steel Products
A700 Practices for Packaging, Marking, and Loading Methods for Steel Products for Shipment
A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
A752 Specification for General Requirements for Wire Rods and Coarse Round Wire, Alloy Steel
A877/A877M Specification for Steel Wire, Chromium-Silicon Alloy, Chrome-Silicon-Vanadium Alloy Valve Spring Quality
A1000 Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality

3. Ordering Information

3.1 It shall be the responsibility of the purchaser to specify all requirements that are necessary for material under this specification. Such requirements may include, but are not limited to, the following:

3.1.1 Quantity (mass),
3.1.2 Name of material (chromium-silicon alloy steel wire),
3.1.3 Dimensions (Table 1 and Section 8),
3.1.4 Condition (Section 6),
3.1.5 Packaging (Section 14),
3.1.6 Heat analysis report, if requested (5.2),
3.1.7 Certification or test report, or both, if specified (Section 13), and
3.1.8 ASTM designation and year of issue.

NOTE 1—A typical ordering description is as follows: 20 000-kg, quenched and tempered chromium-silicon alloy steel wire, size 6.00 mm in 150 kg coils to ASTM A401/A401M dated _____, or for inch-pound units, 40 000-lb quench and tempered chromium-silicon alloy steel spring wire, size 0.250 in. in 350-lb coils to ASTM A401/A401M dated ______.

4. Materials and Manufacture

4.1 The steel may be made by any commercially accepted steel making process. The steel may be either ingot cast or strand cast.

4.2 The finished wire shall be free from detrimental pipe and undue segregation.

5. Chemical Composition

5.1 The steel shall conform to the requirements of Grade 9254 for chemical composition specified in Table 2.

5.2 Heat Analysis—Each heat of steel shall be analyzed by the manufacturer to determine the percentage of elements prescribed in Table 2. This analysis shall be made from a test specimen preferably taken during the pouring of the heat. When requested, this shall be reported to the purchaser and shall conform to the requirements of Table 2.

5.3 Product Analysis—An analysis may be made by the purchaser from finished wire representing each heat of steel. The chemical composition thus determined, as to elements required or restricted, shall conform to the product analysis requirements in Table 4 of Specification A752.
5.4 For referee purposes, Test Methods, Practices, and Terminology A751 shall be used.

6. Mechanical Properties

6.1 Annealed and Cold Drawn—When purchased in the annealed and cold-drawn condition, the wire shall have been given a sufficient amount of cold working to meet the purchaser’s coiling requirements and shall be in a suitable condition to respond properly to heat treatment. In special cases the hardness or tensile strength, if desired, shall be stated in the purchase order.

6.2 Quench and Tempered—When purchased in the quench and tempered condition, the tensile strength and minimum percent reduction of area, sizes 2.50 mm [0.098 in.] and coarser, of the wire shall conform to the requirements prescribed in Table 1. Tensile strength of shaped and flat rolled wires shall conform to this table based on the conversion to equivalent round dimensions. Percent reduction of area is not applicable to shaped and flat rolled wires.

NOTE 2—Any specimen breaking in the grips shall be discarded and a new specimen tested if the specified mechanical properties are not achieved.

NOTE 3—Equivalent round definition: The cross sectional area of non-round wires converted to the round wire diameter.

6.2.1 Number of Tests—One test specimen shall be taken for each ten coils, or fraction thereof, in a lot. Each heat in a given lot shall be tested.

6.2.2 Location of Tests—Test specimens shall be taken from either end of the coil.

6.2.3 Test Method—The tension test shall be made in accordance with Test Methods and Definitions A370.

6.3 Wrap Test:

6.3.1 Quench and tempered or cold drawn wire 4.00 mm [0.157 in.] and smaller in diameter shall wind on itself as an arbor without breakage. Larger diameter wire up to and including 8.00 mm [0.315 in.] in diameter shall wrap without breakage on a mandrel twice the wire diameter. The wrap test is not applicable to wire over 8.00 mm [0.315 in.] in diameter or to shaped and flat rolled wires.

6.3.2 Number of Tests—One test specimen shall be taken for each 10 coils, or fraction thereof, in a lot. Each heat in a given lot shall be tested.

6.3.3 Location of Test—Test specimens shall be taken from either end of the coil.

6.3.4 Test Method—The wrap test shall be made in accordance with Test Methods and Definitions A370.

7. Metallurgical Requirements

7.1 Surface Condition:

7.1.1 On the whole, the surface of the wire as received shall be free of rust and excessive scale. Based upon examination of end specimens, no serious die marks, scratches, or other continuous surface imperfections shall be present. Based upon examination of etched-end specimen, seams shall not exceed
3.5 % of the wire diameter, or 0.25 mm [0.010 in.], whichever is the smaller as measured on a transverse section.

7.1.2 Number of Tests—For the purpose of examination of etched-end specimens, one test specimen shall be taken for each 10 coils, or fraction thereof, in a lot. Each cast or heat in a given lot shall be tested.

7.1.3 Location of Test—Test specimens shall be taken from either or both ends of the coil.

7.1.4 Test Method—The surface shall be examined after etching in a solution of equal parts of hydrochloric acid and water that has been heated to approximately 80°C for up to two minutes in order to remove the oxide scale layer from the wire surface. Test ends shall be examined using 10× magnification. Any specimens showing the presence of a questionable surface imperfection shall have a transverse section taken from the unetched area, properly mounted and polished and examined to measure the depth of the surface imperfection.

7.2 Decarburization:

7.2.1 The depth of complete decarburization (free ferrite) shall not exceed 0.75 % of the equivalent round wire diameter. The total affected depth (free ferrite plus partial decarburization) shall not exceed 2 % of the equivalent round wire diameter on all sizes of wire.

7.2.2 Test Method—Decarburization shall be determined by etching a suitably polished transverse section of wire with nital. The entire periphery to be examined should be in a single plane with no edge rounding.

7.2.3 The entire periphery shall be examined at a magnification of no less than 100× for depth of free ferrite and total affected depth. Smaller wire sizes may require higher magnification. Measure the worst area present excluding decarburization associated with any surface imperfections. Complete decarburization exists when only free ferrite is present. Partial decarburization exists when ferrite is found mixed with pearlite or tempered martensite. Structures of 100× tempered martensite shall be defined as not decarburized.

7.2.4 Decarburization shall be checked on annealed wire by giving a wire sample an austenitize, oil quench and temper heat treatment. A flat shall be ground on the test sample prior to heat treatment. The flat shall have a minimum width equal to one half of the wire diameter. Any decarburization visible on this ground flat shall necessitate a retest with new samples. If no decarburization is visible on the ground flat, evaluate the complete wire section in accordance with 7.2.3.

8. Dimensions and Permissible Variations

8.1 The permissible variations in the diameter of the wire shall be as specified in Table 3. Any definition of shaped tolerances shall be agreed upon by the producer and the purchaser.

9. Workmanship, Finish, and Appearance

9.1 Annealed and Cold Drawn—The wire shall not be kinked or improperly cast. To test for cast, a few convolutions of wire shall be cut loose from the coil and placed on a flat surface. The wire shall lie substantially flat on itself and not spring up nor show a wavy condition.

9.2 Quench and Tempered—The wire shall be uniform in quality and temper and shall not be wavy or crooked.

9.3 Each coil shall be one continuous length of wire properly coiled. Welds made prior to cold drawing are permitted. If unmarked welds are unacceptable to the purchaser, special arrangements should be made with the manufacturer at the time of the purchase.

10. Retests

10.1 If any test specimen exhibits obvious defects or shows the presence of a weld, it may be discarded and another specimen substituted.

11. Inspection

11.1 Unless otherwise specified in the contract or purchase order, the manufacturer is responsible for the performance of all inspection and test requirements specified in this specification. Except as otherwise specified in the contract or purchase order, the manufacturer may use his own or any other suitable facilities for the performance of the inspection and test requirements unless disapproved by the purchaser at the time the order is placed. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification when such inspections and tests are deemed necessary to assure that the material conforms to prescribed requirements.

12. Rejection and Rehearing

12.1 Unless otherwise specified, any rejection based on tests made in accordance with these specifications shall be reported to the manufacturer as soon as possible so that an investigation may be initiated.

12.2 The material must be adequately protected and correctly identified in order that the manufacturer may make a proper investigation.

13. Certification

13.1 When specified in the purchase order or contract, a manufacturer’s or supplier’s certification shall be furnished to the purchaser that the material was manufactured, sampled, tested, and inspected in accordance with this specification and has been found to meet the requirements. When specified in the purchase order or contract, a report of the test results shall be furnished.
13.2 The certification shall include the specification number, year date of issue, and revision letter, if any.

14. Packaging, Marking, and Loading for Shipment

14.1 The coil mass, dimensions, and the method of packaging shall be agreed upon between the manufacturer and purchaser.

14.2 The size of the wire, purchaser’s order number, ASTM specification number, heat number, and name or mark of the manufacturer shall be marked on a tag securely attached to each coil of wire.

14.3 Unless otherwise specified in the purchaser’s order, packaging, marking, and loading for shipments shall be in accordance with those procedures recommended by Practices A700.

15. Keywords

15.1 annealed chromium-silicon alloy; springs; tempered; wire

SUMMARY OF CHANGES

Committee A01 has identified the location of selected changes to this standard since the last issue (A401/A401M – 03) that may impact the use of this standard. (Approved May 1, 2010.)

1) Scope – added shaped wire to language – rationale, this is an existing practice in today’s market; added reference to A1000 and moderate fatigue stresses.

2) Body of text – Deleted “oil quench” and replaced with “quench and tempered”. Rationale is that other quench mediums are currently being used for this specification.

3) Section 2, Referenced Documents – deleted obsolete specifications.

4) 6.2 and 6.3.1 – added language to include shaped and rolled flat wire; added Note 3.

5) 7.1.1, 7.1.2, and 7.1.4 – revised language to reflect actual application of this section.

6) 7.2, Decarburization – added equivalent round.

7) 14.4, Government Procurement – MIL-STD-163 is obsolete and has been removed as an active standard.

8) 14.5, Bar Coding – AIAG B-5 02.00 standard is obsolete and has been removed as an active standard.