Standard Practice for
Machine/Process Capability Study Procedure

1. Scope*

1.1 This practice covers provision of a proper method for determining process capability for new or existing machine processes. It is recommended that available statistical software be used for the calculation of the descriptive statistics required for decision making when using this practice. Where software is not available, Section 8 and Tables 1 and 2 are provided for manual calculations.

2. Referenced Documents

2.1 ASTM Standards:

F1469 Guide for Conducting a Repeatability and Reproducibility Study on Test Equipment for Nondestructive Testing

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 bilateral specifications—specifications that have both upper and lower values.

3.1.2 C_p—an index that indicates the variability of the process with respect to tolerance.

3.1.3 C_pk—an index of process variability and centering. This is a widely-used index which considers the process mean, range, and its relation to the specification nominal.

3.1.4 inspection plan—a set of instructions defining product characteristics, specifications, frequency of inspection, acceptance criteria, and methods of inspection for product at a specified operation.

3.1.5 process parameters—combination of people, equipment, materials, methods, and environment that produce output.

3.1.6 unilateral specifications—specifications that have only upper or lower values.

3.1.7 σ—an estimate of the standard deviation of a process characteristic.

4. Summary of Practice

4.1 A machine/process capability (MPC) study is conducted to provide a level of confidence in the ability of a machine/process to meet engineering specification requirements. This is accomplished through statistical process control techniques as defined in this practice.

4.2 For new equipment purchases, the purchaser’s manufacturing engineering department, or equivalent discipline, shall have primary responsibility for ensuring that the requirements of this practice are met. The purchaser’s quality assurance department shall be available to assist on an as-requested basis.

4.3 New machines/processes will not be accepted for use in production with C_p values less than 1.67. If a manufacturing process must be conditionally accepted, a process improvement/product control plan shall be developed.

4.3.1 The machine/process control plan shall identify specific process improvement activities, which will be implemented to make the process more capable as well as an interim inspection plan to ensure that nonconforming product is not shipped to a customer.

4.4 Product Specifications:

4.4.1 Prior to any MPC study, the product specifications (nominal dimension and tolerances) must be identified, and an appropriate method of variables type inspection selected.

4.4.2 This practice is limited to bilateral specifications whose distributions can be expected to approximate a normal curve. This practice should not be applied to unilateral specifications (flatness, concentricity, minimum tensile, maximum hardness, etc.).

4.5 Gage Capability Analysis:

4.5.1 All gaging systems used to evaluate product involved in the study must have documentation for a gage repeatability and reproducibility study in accordance with Guide F1469 before the machine/capability study is conducted.

4.5.1.1 Gaging systems which consume ≤10 % of the applicable product tolerance are considered acceptable.

4.5.1.2 Gaging systems which consume over 10 to 30 % of the applicable product tolerance are generally considered to be unacceptable. However, users of this guide may authorize their

* A Summary of Changes section appears at the end of this standard
use depending on factors such as the criticality of the specification in question, the cost of alternative gaging systems, and so forth.

4.5.1.3 Gaging systems which consume more than 30% of the product tolerance are unacceptable and must not be used.

4.5.2 All gaging systems must be certified as accurate using standards traceable to NIST, other recognized standards organizations, or the equivalent manufacturer’s standard.

4.6 Process Parameter Selection:

4.6.1 For studies conducted at the equipment vendor’s facility, all machine/process parameters (for example, infeed rates, coolant, dies, pressures, fixtures, etc.) must be established and documented prior to the MPC study so the requirements of 9.5 can be met.

4.6.1.1 Machine/process parameters may not be changed once an MPC study has begun.

4.6.1.2 All machine/process adjustments made during the MPC study must be documented and included with information required in Section 10.1 of this practice.

Note 1—Machine/process adjustments are defined as those adjustments made due to internal machine/process gaging (or other sources of feedback control), or by the operator as part of the normal operation of the machine/process.

4.6.2 The selection of machine/process parameters is the responsibility of the purchaser’s manufacturing engineering or equivalent discipline, or, in some cases, the machine supplier depending on preestablished contractual agreements.

4.6.2.1 The machine/process parameters selected must be consistent with those intended to be used in production.

4.6.3 Machine/process parameters may be systematically varied after a study is completed and additional MPC studies performed for optimization purposes.

5. Significance and Use

5.1 This practice is designed to evaluate a machine or process isolated from its normal operating environment. In its normal operating environment, there would be many sources of variation that may not exist at a machine/process builder’s facility; or put another way, this study is usually conducted under ideal conditions. Therefore, it should be recognized that the results of this practice are usually a “best case” analysis, and allowances need to be made for sources of variations that may exist at the purchaser’s facility.

6. Material Selection

6.1 Material (for example, steel slugs, bar, wire, prefinished parts, etc.) used for MPC studies shall be selected at random. The variability of material used for MPC studies should be consistent with the variability of material the machine is likely to see in production. However, all selected samples shall conform to their applicable product engineering standards.

6.2 Presorting of material is not permissible for machine/process qualification purposes.

6.3 In some cases, machine/process capability results may be influenced by the specific product specifications selected for the study. The specific product selected for qualifying a new machine/process should be based on that which will yield the most conservative results. If the relationship between specific product specifications and machine/process capability is unknown, two or more distinct studies should be performed with different products to qualify and accept the new machine/process.

7. Procedure-Machine/Process Capability Study

7.1 Operate the machine/process for a sufficient period of time to ensure that the machine/process is stable and all initial setup adjustments are complete.

7.2 Control charting techniques should be utilized to determine the stability and capability of the machine/process.

7.2.1 When possible, a standard X, R chart should be used with subgroup size n equals 2 through 5.

7.2.1.1 Sampling frequencies shall be established to ensure that all likely sources of variability occur.

7.2.1.2 A minimum of 25 subgroups are required to establish control.

7.2.2 When the quantity of sample measurements cannot be practically obtained, it is permissible to utilize a chart for individuals and moving ranges.

7.2.2.1 A minimum of 25 subgroups are required to establish control.

7.2.3 After the study is complete, calculate and plot the control limits, \bar{X} and R (or MR), for each specification identified in 4.4.1 (see Table 1). If during the study the machine/process was out of control, the MPC study is not valid. The root cause(s) of the out-of-control condition(s) must be identified and eliminated and the study repeated.

7.2.3.1 If the out-of-control condition is associated with no more than two subgroups on the range chart, one point on the X or individuals chart and the root cause of the out-of-control condition is identified and corrected, new control limits may be calculated by excluding the out-of-control points. A second study is not required.

7.2.3.2 In some instances, control chart analysis may reveal out-of-control conditions that are inherent to the machine/process. Trends due to tool wear or grinding wheel wear are typical examples. If the cause of the out-of-control condition is known, the out-of-control condition is both repeatable and predictable, and the condition cannot be eliminated, the MPC study may be considered acceptable and C_p and C_{pk} values calculated in accordance with 8.1-8.3, or through the use of statistical software.
8. Calculating Results

8.1 Estimate the process standard deviation as follows:

\[\sigma = \frac{R}{d_2} \]

(1)

where:

- \(d_2 \) = constants for sample size 2 to 10, see Table 2.

8.2 Calculate \(C_p \) by dividing the total product tolerance by 6 \(\sigma \).

8.3 Calculate \(C_{p,k} \) as follows:

\[C_{p,k} = \min \left(\frac{USL - \bar{X}}{3\sigma} \text{ or } \frac{\bar{X} - LSL}{3\sigma} \right) \]

(2)

where

- \(USL \) = upper specification limit,
- \(LSL \) = lower specification limit.

9. Analysis of Results

9.1 The qualification of a machine/process shall be based on a review of the statistical parameters \(C_p \) and \(C_{p,k} \). \(C_p \) and \(C_{p,k} \) are both numerical indexes that provide a measure of a process’s variability relative to predefined product specifications. \(C_p \) considers the tolerance range only, whereas \(C_{p,k} \) considers both the tolerance range as well as how close the process average was to the nominal specification. \(C_p \) and \(C_{p,k} \) will have the same numerical value when the process average is centered around nominal. As the process average moves away from nominal, \(C_{p,k} \) will decrease.

9.2 The decision to accept or qualify a manufacturing process shall be based on the following criteria:

- **Accept**—\(C_{p,k} \) equals 1.67 or greater. Process is capable of consistently producing product within specification, if controlled properly, using statistical process control (SPC) techniques.

- **Conditional Acceptance**—\(C_{p,k} \) equals 1.33 to 1.67. Machine/process is marginally capable. SPC techniques may be used; however, special care must be taken to ensure that the machine/process average is as close to nominal as possible. Occasional 100% sorting of product may be required.

- **Reject**—\(C_{p,k} \) equals less than 1.33. Process is incapable of producing product within specification. This will require 100% sorting by the machine/process operator.

9.3 A process with \(C_{p,k} < 1.33 \) may also be accepted if both of the following conditions exist.

- \(9.3.1 \ C_p \geq 1.67 \), and

- \(9.3.2 \) The machine/process is such that the machine/process average can be controlled by the machine operator through normal machine/process adjustments.

9.3.3 The requirements identified in 4.3 shall be imposed on any machine/process that receives conditional acceptance.

9.4 In many cases, capability may vary depending on the degree of control exercised during the study (that is, the type and frequency of adjustments made). The purchaser is responsible for reviewing all adjustments made during the study and ensuring that the same level of control can/will be used in production.

9.5 If the original machine/process capability study is conducted at the equipment vendor’s facility, a follow-up study must be performed after the machine/process is set up and running in the appropriate manufacturing facility to confirm results.

10. Documentation

10.1 It is recommended that documentation of each gage repeatability/reproducibility study and MPC study conducted be maintained and used as a benchmark for continuous improvement of the machine/process.

11. Keywords

- \(C_p \), \(C_{p,k} \), fasteners, gage capability, inspection plan, machine capability, machine capability study, process capability, process capability study, process parameters, sampling, SPC, statistical process control, unilateral specification

SUMMARY OF CHANGES

This section contains the principal changes to the standard that have been incorporated since the last issue (F1503 – 95).

1. Revised the title from Potential to Capability Study, and throughout the body of the standard to reflect current industry practices.

2. Changed the capability measure index from \(P_p \) and \(P_{p,k} \) to \(C_p \) and \(C_{p,k} \) to align the pruce with short-run studies.

3. Removed the figures of variables and individuals control charts.